Abstract

The study was aimed to estimate whether rat's exposure to cadmium (Cd; 50 mg/l in drinking water for 12 weeks) and/or ethanol (EtOH; 5 g/kg b.wt./24 h p.o. for 12 weeks), noted by us to induce oxidative stress and stimulate lipid peroxidation, can cause oxidative damage to proteins and DNA, and whether and to what extent the effects of co-exposure differ from those observed under the treatment with each substance alone. Protein carbonyl groups (PC) and protein thiol groups (PSH) in the serum, liver and kidney, as markers of oxidative protein damage, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the serum, as a marker of DNA oxidation, were determined. The exposure to Cd or/and EtOH led to oxidative protein damage (increased PC and decreased PSH concentrations in the serum and/or liver), and to DNA oxidation (increased 8-OHdG concentration in the serum). The effects were more advanced at the co-exposure than at the treatment with each substance alone. The more serious damage to proteins and DNA at the co-exposure to Cd and EtOH seems to be the effect of independent action of both xenobiotics. The results of the present paper together with our recent findings in the same rats seem to indicate that at co-exposure to Cd and EtOH proteins and DNA may be more vulnerable to oxidation than lipids. The paper is the first report suggesting that excessive EtOH consumption during exposure to Cd may increase the risk of health damage via enhancing protein and DNA oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.