Abstract

The goal of this study was to clarify the mechanism responsible for the catabolism of alpha-tocopherol. The vitamin, bound to albumin, was incubated with rat liver microsomes and appeared to be broken down. Optimal production of the metabolite was obtained when 1 mg of microsomal protein was incubated with 36 microM of alpha-tocopherol in the presence of 1.5 mM of NADPH. Chromatographic and mass spectrometric analyses of the metabolite led to the conclusion that it consists of an omega-acid with an opened chroman ring, although we could not perform nuclear magnetic resonance analysis to confirm this. Our data show that alpha-tocopherol is omega-oxidized to a carboxylic acid and that this process can occur in rat liver microsomes in the presence of NADPH and O2. The oxidation to the quinone structure appears to be a subsequent event that may be artifactual and/or catalyzed by a microsomal enzyme(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call