Abstract

Cellulose II nanocrystals (CNC II) possess a higher thermal stability and improved emulsifying capability than cellulose I nanocrystals (CNC I) owing to the higher density of their hydrogen bonds and more larger surface areas. Therefore, CNC II exhibit substantial advantages for value-added nanocomposite materials. Current CNC II preparation methods are mainly based on a two-pot reaction involving acid hydrolysis and crystal transformation. In this study, considering the oxidative nature of potassium ferrate (K2FeO4) in an alkaline environment containing a small amount of sodium hypochlorite (NaClO), a one-step and efficient approach was developed for the preparation of carboxyl-bearing CNC II from cotton pulp, affording a maximum CNC II yield of 45.14 %. Atomic force microscopy analysis revealed that the prepared CNCs exhibited a “rod-like” shape with a width of ~7 nm and a length of ~269 nm. The resulting CNC II also exhibited excellent thermal stability (Tonset = 311.4 °C). Furthermore, high-internal-phase Pickering emulsions (HIPPEs) stabilized by CNC II were prepared to stabilize liquid paraffin in the absence of surfactant. The results revealed that CNC II could be used as an effective emulsifier to fabricate the stable and gel-like HIPPEs, and are promising for the preparation of high value-added nanocomposite materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call