Abstract

The defect-electronic properties of {112} microfaceted surfaces of epitaxially grown ${\mathrm{CuInSe}}_{2}$ thin films are investigated by scanning tunneling spectroscopy and photoelectron spectroscopy techniques after various surface treatments. The intrinsic ${\mathrm{CuInSe}}_{2}$ surface is found to be largely passivated in terms of electronic defect levels in the band-gap region. However, surface oxidation leads to an overall high density of defect levels in conjunction with a considerable net surface dipole, which persists even after oxide removal. Yet, a subsequent annealing under vacuum restores the initial condition. Such oxidation/reduction cycles are reversible for many times providing robust control of the surface and interface properties in these materials. Based on ab initio simulations, a mechanism where oxygen dissociatively adsorbs and subsequently diffuses to a subsurface site is proposed as the initial step of the observed dipole formation. Our results emphasize the relevance of oxidation-induced dipole effects at the thin film surface and provide a comprehensive understanding toward passivation strategies of these surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.