Abstract

Both cytochrome c peroxidase (CcP) and a mutant cytochrome c peroxidase in which the distal histidine has been replaced by leucine, CcP(H52L), are converted to hydroxy-ligated derivatives at alkaline pH. In CcP, the hydroxy-ligated derivative is subsequently converted to a bis-imidazole species prior to protein denaturation while the initial hydroxy-ligated CcP(H52L) is converted to a second, spectroscopically distinct hydroxy-ligated species prior to denaturation. The spectra of the alkaline forms of CcP and CcP(H52L) have been determined between 310 and 700 nm. The pH dependence of the rate of reaction between CcP(H52L) and hydrogen peroxide has been extended to pH 10. The hydroxy-ligated form of CcP(H52L) reacts with hydrogen peroxide 4 times more rapidly than the pentacoordinate, high-spin form of CcP(H52L) that exists at neutral pH. The rate of the reaction between p-nitroperoxybenzoic acid and CcP(H52L) has been measured between pH 4 and pH 8. Neutral p-nitroperoxybenzoic acid reacts with CcP(H52L) 10(5) times more slowly than with CcP while the negatively charged p-nitroperoxybenzoate reacts with CcP(H52L) 10(3) times more slowly than with CcP. These data indicate that the role of the distal histidine during the initial formation of the peroxy anion/heme iron complex is not simply base catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call