Abstract

Tetracaine hydrochloride (TCH) is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on [CAB]o, shows fractional–order dependence on [substrate]o, and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.

Highlights

  • Local anesthetics are drugs which produce reversible blockade of nerve impulse conduction

  • Tetracaine hydrochloride (TCH) is used to modify the function of calcium release channels that control the release of calcium from intracellular stores

  • We found that there was no information available on the oxidation kinetics of TCH with any oxidant

Read more

Summary

Introduction

Local anesthetics are drugs which produce reversible blockade of nerve impulse conduction. They act directly on specific receptors on sodium channels inhibiting sodium ion influx. The miscellaneous nature of chemistry of N-haloamines is a significance of their aptitude to act as sources of species, such as halonium cations, hypohalites, and N-anions which act as bases, nucleophiles, and nutrenoids [3,4,5,6,7] They behave as mild oxidants and are suitable for the partial oxidation of several groups. In the glow of the available information and in continuationof work on oxidation studies with organic chloramines in general and medicinal compounds in particular, the present investigations were undertaken. The main objectives of the present study are to (i) explicate plausible mechanisms, (ii) deduce suitable rate laws, and (iii) determine the various reactive species

Experimental
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call