Abstract

In the process of development of D–T fusion power reactors, recovery of tritium released into the last confinement system would be a key issue related to safety. If an accidental leakage of tritium takes place in a fusion power plant, a large volume of air should be detritiated with an air cleanup system (ACS). In ACS, tritium gas is converted to tritiated water vapor with a catalyst bed, and then which is recovered with an adsorption bed. In this study, the authors examined the applicability of honeycomb-type catalysts to ACS. A screening test of catalysts for oxidation of hydrogen and deuterium was performed using various honeycomb-type and pebble-type catalysts. Experimental results reveal that a honeycomb-type catalyst possesses a high oxidation performance for oxidation of hydrogen isotopes. Furthermore, the isotope effect on the oxidation of hydrogen isotopes over the honeycomb-type catalyst was thoroughly examined and quantified using tritium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.