Abstract

The oxidation of a stoichiometric diethyl ether-oxygen-nitrogen mixture containing 5000 ppm of fuel was studied in a jet-stirred reactor at 10 atm and a residence times of 1 s. Experimental temperatures varied stepwise for 440 to 740 K and products were quantified by gas chromatography with TCD and FID, gas chromatography-mass spectrometry, and FTIR. Other experiments in the temperature range 480 to 570 K were performed for characterizing elusive cool flame products. To this end, gas samples were trapped in acetonitrile for flow injection analyses and liquid chromatography-mass spectrometry (Orbitrap Q-ExactiveⓇ). For ionization, we used positive and negative atmospheric pressure chemical ionization (APCI). Among fuel-specific products, hydroperoxides and diols (C4H10O3), carbonyl hydroperoxides (C4H8O4), acetic acid, di-keto ethers (C4H6O3), cyclic ethers (C4H8O2) and highly oxygenated molecules, i.e., keto-dihydroperoxides (C4H8O6), keto-trihydroperoxides (C4H8O8), di-keto-hydroperoxides (C4H6O5), and diketo-dihydroperoxides (C4H6O7), were detected. To confirm the presence of –OH or –OOH groups in oxidation products, H/D exchange with D2O was used. DNPH derivatization was used to identify carbonyls present in samples, especially those with a molecular weight below 50 amu which cannot be detected directly by the mass spectrometer. Chemical kinetic modeling using a mechanism taken from the literature was performed. Although reasonable agreement between the data and the simulations was observed for several species, some discrepancies between experimental and computed mole fractions were observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.