Abstract

Wooden building materials have advantages in terms of biodegradability, non-toxicity, pollution-free and recycling. Currently, applications of natural wood are extremely limited because of low density, low strength and toughness. Therefore, we reported an effective modification strategy with nano-scale cellulose nanofibrils design to prepare a synergistically enhanced cellulosic material. Via three steps: i) the secondary alcohol hydroxyl groups in C2, C3 position were cut; ii) oxidize the hydroxyl group at C2, C3 position to achieve dialdehyde cellulose; and iii) oxidized again to obtain dicarboxylic cellulose. Subsequently, thanks to the regulation of the average moisture content, the moisture content in the wood surface and subsurface increased in a short time. The wood softening layer contributes to the hotpressing treatment of the wood. The mechanical properties and dimensionality have been greatly improved. The obtained delignified oxidated hot-pressed wood with 0.55 mmol/g carboxyl group content demonstrates excellent strength of 328.8 ± 7.43 MPa and Young's modulus of 8.1 ± 0.14 GPa, which is twice than that of natural wood. Delignified oxidated hot-pressed wood also shows exceptional toughness of 8.3 ± 0.28 MJ/m3. Other than that, the shore hardness indicates 0.55 mmol/g carboxylic group, which could increase the hardness at the wood surface hardness to 72.5 ± 4.29°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.