Abstract

The oxidation of carbon derived from phenolic resin and heat-treated at temperatures ranging from 1000 to 2400°C for 1 hr was studied in a flowing oxygen atmosphere at temperatures between 424 and 692°C. The heat-treatment alters the crystallite size, L c , from 10.7 to 21.4 Å; the interlayer spacing, d 002, from 3.74 to 3.52 Å and the surface area from 0.22 to 1.34 m 2/g. L a L c ratio ranges from 1.62 to 2.22 and appears to be independent of heat treatment temperature and oxidation level. The surface area of the carbon and its change with oxidation were found to be sensitive to the heat treatment process. Heat treatments at 1000 and 1400°C produce carbon with surface area which increases by nearly two orders of magnitude after 10% oxidation. The oxidation rate decreases with increasing heat treatment temperature with the largest change between 1000 and 1400°C. Samples heat-treated at different temperatures give slightly different activation energies with an average value of 41.5 kcal/mole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.