Abstract
In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel-titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400-500 °C, and times, 30-120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.