Abstract

The model explaining the occurrence of the electron concentration step front during oxidation of nitrogen-doped TiO2-δ thin films is presented. This model is based on ambipolar chemical diffusion coefficient analysis, for which immobile and uniformly distributed nitrogen component is assumed. The diffusion species and oxygen activity (pressure) profiles are obtained by numerical and approximate analytical simulation of the chemical diffusion. The profiles indicate the presence of two separate singularities: the electron concentration step front, and the electron-hole recombination reaction front. The electron concentration step front relates to the singularity of the ambipolar diffusion of three types of charged species with essentially different diffusion coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.