Abstract

Abstract The oxidation behaviour of experimental Co – Re-based alloy at 1000 °C was studied. A set of binary, ternary and quaternary alloys from the Co – Re – Cr – C system was used as model alloys to understand the role each alloying element plays on oxidation. The morphology and composition of the oxide scale that formed was analysed by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. It was found that the present Co – Re alloys with 23 at.% and 30 at.% Cr additions behaved very similarly to Co – Cr binary alloys with equivalent Cr content. The oxide scale was multilayered, consisting of a dense CoO outer layer, a porous mixed oxide layer containing Co-oxide and Co – Cr spinel, and a discontinuous and non-protective Cr3O2 layer. The binary Co – Re alloy behaved differently in oxidation, and it formed only a monolithic CoO scale. However, Re in combination with Cr promotes Cr – Re-rich phase formation, which oxidises preferentially compared to the Co matrix. Carbon ties up part of the Cr to form Cr23C6 type carbides. However, these carbides are not stable at 1000 °C and dissolved with time, therefore C had only a minor role in the oxidation behaviour. In general, increasing Cr content in the alloy improved oxidation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call