Abstract

Manganese (Mn) and iron (Fe) oxides are ubiquitous solids in terrestrial systems that have high sorptive capacities for many trace metals, including arsenic (As). Although numerous studies have characterized the effects of As adsorption onto Fe and Mn oxides individually, the fate of arsenic within mixed systems representative of natural environments has not been completely resolved. Here, we examine oxidation and competitive retention of As on goethite and birnessite using a Donnan reactor, where each oxide is isolated by a semi-permeable membrane through which arsenic can migrate. To initiate the Donnan reactor experiments, As(III) was simultaneously added to both chambers. Arsenic(III) injected into the birnessite chamber is rapidly oxidized to As(V) and then slowly redistributes across both chambers, while that added to the goethite chamber undergoes rapid adsorption; the adsorbed As(III) on goethite subsequently undergoes desorption and diffusion into the birnessite chamber followed by oxidation to As(V). With increased reaction time, As(V) is generated and preferentially partitioned onto goethite due to higher adsorption affinity compared to birnessite. Furthermore, the dissolved concentration of As(V) is controlled by the adsorption capacity of the goethite surface, which when saturated, leads to increased aqueous As concentrations; despite an increase in As(V) loading on birnessite with increasing initial As(III) concentration, the resulting aqueous As(V) concentration increase appreciably once the goethite surface is saturated. Our findings show that Mn oxides in soils act as a temporary sorbent of As, but operate primarily as strong oxidants responsible for transformation of As(III) to As(V), which can then strongly adsorb on the surrounding Fe oxide matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call