Abstract
Sulfur mustard (SM) is a chemical weapon that targets the skin, eyes, and lung. It was first employed during World War I and it remains a significant military and civilian threat. As a bifunctional alkylating agent, SM reacts with a variety of macromolecules in target tissues including nucleic acids, proteins and lipids, as well as small molecular weight metabolites such as glutathione. By alkylating subcellular components, SM disrupts metabolism, a process that can lead to oxidative stress. Evidence for oxidative stress in tissues exposed to SM or its analogs include increased formation of reactive oxygen species, the presence of lipid peroxidation products and oxidized proteins, and increases in antioxidant enzymes such as superoxide dismutase, catalase, and glutathione-S-transferase. Inhibition of antioxidant enzymes including thioredoxin reductase by SM can also disrupt cellular redox homeostasis. Consistent with these findings, SM-induced toxicity has been shown to be reduced by antioxidants in both in vitro and in vivo models. These data indicate that drugs that target oxidative stress pathways may represent important candidates for reducing SM-induced tissue injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.