Abstract

Although iron is an essential mineral, excess iron intake during pregnancy may increase oxidative stress in tissues. This study was conducted to investigate the effects of iron overload during pregnancy on iron status and oxidative stress in maternal rats. Ten week-old female Sprague-Dawley rats were mated with male rats. Non-pregnant (control) and pregnant rats were fed diets containing normal Fe (35 mg/kg diet), high Fe (350 mg/kg diet), or excess Fe (1,050 mg/kg diet) during pregnancy. Rats were sacrificed on pregnancy day 19. No significant difference in weight gain, diet intake, or litter size was observed according to iron intake levels. Furthermore, serum iron, hemoglobin, and hematocrit were not different among the rats administered the three levels of Fe both in the control and pregnant groups. However, the iron levels were lower in pregnant rats than those in the control. The liver and spleen iron contents increased significantly in the excess Fe group. An increase in liver ferritin levels with increasing iron intake was observed. Protein carbonyl content, as a marker of oxidative stress, increased significantly in liver with increasing iron intake but not malondialdehyde. Glutathione peroxidase activity in the liver of pregnant rats fed excess iron decreased significantly. Bcl-2 protein expression in the liver declined remarkably with increasing maternal iron intake in pregnant rats. Taken together, iron overload during pregnancy had little effect on hematology. However, the deposits of iron in the liver and the decline in antioxidant enzyme activity implied increased oxidative stress in tissues of the excess Fe group. These results suggest that excess iron intake during pregnancy increases oxidative stress in maternal tissues and may also affect fetal tissues. (Korean J Nutr 2011; 44 (1): 5 ~ 15 )

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call