Abstract

In isolated diaphragms from rats fed on a high-fat diet, oxfenicine (S-4-hydroxyphenylglycine) stimulated the depressed rates of pyruvate decarboxylation (2-fold) and glucose oxidation (5-fold). In diaphragms from normal-fed rats, oxfenicine had no effect on pyruvate decarboxylation but doubled the rate of glucose oxidation and inhibited the oxidation of palmitate. Treatment of fat-fed rats with oxfenicine restored the proportion of myocardial pyruvate dehydrogenase in the active form to that observed in normal-fed rats. In rat hearts perfused in the presence of glucose, insulin and palmitate, oxfenicine increased carbohydrate oxidation and stimulated cardiac performance with no increase in oxygen consumption - i.e. improved myocardial efficiency. Working rat hearts perfused with glucose, insulin and palmitate and subjected to 10 min global ischaemia recovered to 81% of their pre-ischaemic cardiac output after 30 min reperfusion, and released large amounts of lactate dehydrogenase into the perfusate. Hearts perfused with oxfenicine had slightly higher pre-ischaemic cardiac outputs and, on reperfusion, recovered more completely (to 96% of the pre-ischaemic value). Oxfenicine reduced the amount of lactate dehydrogenase released by 73%. We conclude that, in rat hearts with high rates of fatty acid oxidation, a relative increase in carbohydrate oxidation will improve myocardial efficiency, and preserve mechanical function and cellular integrity during acute ischaemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call