Abstract
Extensive studies on the regulation of the volume and composition of amniotic and allantoic fluid in the sheep have suggested that the amniotic and allantoic membranes must play an active role in these processes. Little is known of the functional morphology of the sheep amnion and allantois beyond the presence of an epithelium overlying connective tissue. The ovine amnion and allantois were characterized at a range of gestational ages (27-140 days of gestation, where term is 145-150 days) by electron microscopy (SEM and TEM) and the presence of transporting ATPases examined by use of immunohistochemistry (Ca++-ATPase) and in situ hybridization (Na,K-ATPase). With increasing gestational age, the cell height of epithelium of the membranes increased, as did the number of apical microvilli and the length of zonulae occludentes. Epithelial cell cytoplasm increased in complexity, and cell shape changed from flattened to cuboidal. Proliferation of cells occurred until close to term. Immunoreactivity to Ca++-ATPase was present in the basolateral membranes at all stages of gestation examined, but hybridization with the alpha and beta subunits of Na,K-ATPase was present only at or after 100 days of gestation. The epithelia of the sheep amnion and allantois display characteristics typical of transporting epithelia. As the epithelia mature, changes related to increased capacity for solute and fluid transport regulation occur.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have