Abstract

Materials at the quantum scale are highly unpredictable, making it impossible to predict certain measurements. There are also limitations to numerical simulations and modelling techniques for understanding advanced materials at the molecular scale. Professor Jun Koyanagi, Koyanagi Laboratory, Tokyo University of Science, Japan, is working to establish a quantitative link that connects the nanoscale simulations to the metre scale. This involves developing methods and techniques that accurately relate the behaviour observed at the molecular level to the macroscopic properties of the material. In order to do this, a comprehensive understanding of the underlying physics and mechanics at each scale is required. Koyanagiâ–™s team is hoping to apply multiscale numerical simulations that will help to ensure the long-term reliability of a range of advanced materials. A key focus of the research is carbon fibre reinforced plastic (CFRP) and Koyanagi wants to pave the way for the widespread use of CFRP in aerovehicles in the near future. The team will conduct multiscale numerical simulations and advanced material development to ensure the reliability and long-term durability of CFRP. This will allow them to confidently incorporate CFRP into the construction of aerovehicles and these will be more sustainable and environmentally friendly as the lightweight nature of CFRP will significantly contribute to enhancing fuel efficiency and reducing emissions. The researchers are using analytical and experimental methods to evaluate the thermal and mechanical properties of composite materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call