Abstract

The physical understanding of net-current-free helical plasmas has progressed in the Large Helical Device (LHD) since the last Fusion Energy Conference in Geneva, 2008. The experimental results from LHD have promoted detailed physical documentation of features specific to net-current-free 3D helical plasmas as well as complementary to the tokamak approach. The primary heating source is neutral beam injection (NBI) with a heating power of 23 MW, and electron cyclotron heating with 3.7 MW plays an important role in local heating and power modulation in transport studies. The maximum central density has reached 1.2 × 1021 m−3 due to the formation of an internal diffusion barrier (IDB) at a magnetic field of 2.5 T. The IDB is maintained for 3 s by refuelling with repetitive pellet injection. In a different operational regime with moderate density less than 2 × 1019 m−3, a plasma with a central ion temperature reaching 5.6 keV exhibits the formation of an internal transport barrier (ITB). The ion thermal diffusivity decreases to the level predicted by neoclassical transport. In addition to the rotation driven by the momentum input due to tangential NBI, the existence of intrinsic torque to drive toroidal rotation is identified in the plasma with an ITB. This ITB is accompanied by an impurity hole which generates an impurity-free core. The impurity hole is due to a large outward convection of impurities in spite of the negative radial electric field. The magnitude of the impurity hole is enhanced in the magnetic configuration with a large helical ripple and for heavier atoms. Another mechanism for suppressing impurity contamination is identified at the plasma edge with a stochastic magnetic field. A helical system shares common physics issues with tokamaks such as 3D equilibria, transport in a stochastic magnetic field, plasma response to a resonant magnetic perturbation, divertor physics and the role of radial electric field and meso-scale structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call