Abstract

In industrial gas turbine (IGT) engine manufacturing, nickel-based superalloys are used mainly to meet the needs of components of the hot gas pathway. Although these alloys have high-temperature capabilities, the parts are prone to damage during service. The high working temperatures of these engines lead to component degradation due to creep, fatigue, and oxidation reactions; therefore, due to the high cost of newly produced superalloy components, it is usually more cost-effective to repair the damaged parts rather than completely replacing them. Joining and repairing techniques are necessary when manufacturing and repairing these alloys. This article will present an overview of the Ni-based superalloy for industrial gas turbine application by studying the microstructure of Ni-based superalloy, weldability issues, and cracking phenomena. Joining/repairing techniques of Ni-base superalloy with advantages and limitations to each technique are discussed to know a suitable technique for use in the high-temperature application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.