Abstract
Strong overpressure conditions are widely distributed in the deep Longmaxi Formation (Fm) shale reservoirs in the Southern Sichuan Basin, with pressure coefficients ranging from 1.75 to 2.45. Overpressure plays a positive role in the high yield of shale gas, but a detailed study of its generation mechanism, evolution history, and potential impact on pore development is still lacking. This study’s evidence from theoretical analysis and the logging response method indicates that hydrocarbon generation expansion is the main generation mechanism for strong overpressure. Through the combined analysis of basin modeling, inclusions analysis, and numerical simulation, pressure evolution at different stages is quantitatively characterized. The results show that, during the shale’s long-term subsidence process, the shale reservoir’s pressure coefficient increased to 1.40 because of oil generated by kerogen pyrolysis. Then it increased to 1.92 due to gas generated by residual oil cracking. During the late strong uplift process of the shale, temperature decrease, gas escape, and stratum denudation caused the pressure coefficient to first decrease to 1.84 and then increased to 2.04. Comparing pore characteristics under different pressure coefficients indicates that higher pressure coefficients within shale reservoirs contribute to the maintenance of total porosity and the development of organic macropores, but the influence on the morphology of organic pores is negligible. These results will provide the scientific basis for optimizing sweet spots and guiding shale gas exploration in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.