Abstract

Tectonic deformation of different intensities significantly controls shale pore structure, seepage channels, and gas content. The Longmaxi Formation shales in the southern Sichuan Basin have experienced multi-stage tectonic movements, resulting in a diverse fracture system and tectonic deformation. This study focuses on three representative tectonic morphologies: deeply buried strongly deformed (DBSD), deeply buried weakly deformed (DBWD) and shallowly buried weakly deformed (LBWD). We investigated the pore structure characteristics and heterogeneity of these shales under various tectonic conditions using total organic carbon (TOC) content, X-ray diffraction (XRD), scanning electron microscopy (SEM), a low-pressure N2/CO2 adsorption experiment (LP-N2/CO2 GA), and multi-scale fractal theory. The results reveal that strong tectonic compression and deformation conditions lead to the compression and flattening of organic pores by brittle minerals, resulting in long, oriented OM pores. Fracturing of brittle pore creates multiple internal fracture systems linked to dissolution pores, forming a complex micro-fracture–pore network. With intense tectonic deformation, mesopores tend to be compressed, increasing micropore pore volume (PV) and surface area (SA). The DBSD shale exhibits the highest micropore heterogeneity, while the LBWD shale shows the lowest heterogeneity. Fractal analysis indicates a significant decrease in micropore fractal dimension (Df) with increasing burial depth. In contrast, the surface and matrix fractal dimensions (Ds and Dm) of low-buried shale micropores and meso-macropores align vertically. Shale reservoirs in tectonically stable regions exhibit more favourable gas-bearing characteristics than strongly tectonically deformed areas. The LBWD has stable tectonic conditions that are favourable for shale gas preservation. Conversely, slip faults under deep burial conditions lead to extrusion and deformation of shale pore space, ultimately compromising the original reservoir capacity and hindering shale gas enrichment. These findings contribute significantly to our understanding of pore structure and heterogeneity in tectonically deformed shale reservoirs, providing invaluable guidance for the exploration, development, and prediction of shale gas resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call