Abstract
In this paper, we address the challenging task of simultaneous recognition of overlapping sound events from single channel audio. Conventional frame-based methods are not well suited to the problem, as each time frame contains a mixture of information from multiple sources. Missing feature masks are able to improve the recognition in such cases, but are limited by the accuracy of the mask, which is a non-trivial problem. In this paper, we propose an approach based on Local Spectrogram Features (LSFs) which represent local spectral information that is extracted from the two-dimensional region surrounding “keypoints” detected in the spectrogram. The keypoints are designed to locate the sparse, discriminative peaks in the spectrogram, such that we can model sound events through a set of representative LSF clusters and their occurrences in the spectrogram. To recognise overlapping sound events, we use a Generalised Hough Transform (GHT) voting system, which sums the information over many independent keypoints to produce onset hypotheses, that can detect any arbitrary combination of sound events in the spectrogram. Each hypothesis is then scored against the class distribution models to recognise the existence of the sound in the spectrogram. Experiments on a set of five overlapping sound events, in the presence of non-stationary background noise, demonstrate the potential of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.