Abstract

Soil and vegetation are two critical factors for controlling the overland transport kinetics of pathogens in a natural environment. With livestock operations moving more towards concentrated animal operations, the need to dispose of a very large amount of manure in a localized area is becoming increasingly important. Animal manure contains a substantial amount of microbial pathogens, including rotavirus, which may pose a threat of contamination of water resources. This study examined the kinetics of rotavirus in overland transport, with an overall objective of optimizing the design of best management practices, especially vegetative filter strips. The overland transport of rotavirus was studied using three soil types (Catlin silt-loam, Darwin silty-clay, Alvin fine sandy-loam), spanning the entire spectrum of typical Illinois soil textures. A 20-min rainfall event was produced using a small-scale (1.07 m × 0.66 m) laboratory rainfall simulator over a soil box measuring 0.610 m × 0.305 m. Each soil type was tested for rotavirus transport kinetics with bare surface conditions, as well as with Smooth Brome and Fescue vegetative covers. Surface runoff, near-surface runoff, soil cores, and vegetation were each analyzed for infective rotavirus particles using cell-culture infectivity assays. Results show that vegetation reduces the recovery of infective rotavirus particles in surface runoff by an average of 73%, in addition to delaying the time to peak recovery. The vegetation, in general, appeared to decrease the recovery of infective rotavirus particles in surface runoff by impeding surface flow and increasing the potential for infiltration into the soil profile.

Highlights

  • Rotaviruses have been identified as the major causative agents of diarrheal disease in humans and a wide variety of animals [1]

  • The three soil types are first compared according to the surface condition in order to examine the effect of soil type on the recovery of infective rotavirus particles during overland transport

  • It appears that soils with considerable amounts of clay (Catlin and Darwin) increase the amount of infective rotavirus particles recovered in surface runoff, which is in agreement with our previous findings that rotavirus particles preferentially interact with and are removed by sand particles

Read more

Summary

Introduction

Rotaviruses have been identified as the major causative agents of diarrheal disease in humans and a wide variety of animals [1]. Rotavirus infections are of high agricultural importance because of the impact diarrheal disease can have on neonatal and post-weaning animals, especially pigs and calves. There is a shortage of recent literature on the economic burden of rotavirus on livestock, but studies [5,6] have found that morbidity due to rotavirus infections in pigs and calves can be as high as 80% with mortality reaching. High morbidity and mortality in livestock animals leads to economic losses from the loss of animals, treatment costs, and reduced growth rates.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call