Abstract

To elucidate the mechanism of transforming growth factor (TGF)-β1 overexpression in prostate cancer cells. Malignant (PC3, DU145) and benign (RWPE1, BPH1) prostate epithelial cells were used. Phosphatase activity was measured using a commercial kit. Recruitment of the regulatory subunit, Bα, of protein phosphatase 2A (PP2A-Bα) by TGF-β type I receptor (TβRI) was monitored by coimmunoprecipitation. Blockade of TGF-β1 signaling in cells was accomplished either by using TGF-β-neutralizing monoclonal antibody or by transduction of a dominant negative TGF-β type II receptor retroviral vector. Basal levels of TGF-β1 in malignant cells were significantly higher than those in benign cells. Blockade of TGF-β signaling resulted in a significant decrease in TGF-β1 expression in malignant cells, but not in benign cells. Upon TGF-β1 treatment (10 ng/mL), TGF-β1 expression was increased in malignant cells, but not in benign cells. This differential TGF-β1 auto-induction between benign and malignant cells correlated with differential activation of extracellular signal-regulated kinase (ERK). Following TGF-β1 treatment, the activity of serine/threonine phosphatase and recruitment of PP2A-Bα by TβRI increased in benign cells, but not in malignant cells. Inhibition of PP2A in benign cells resulted in an increase in ERK activation and in TGF-β1 auto-induction after TGF-β1 (10 ng/mL) treatment. These results suggest that TGF-β1 overexpression in malignant cells is caused, at least in part, by a runaway of TGF-β1 auto-induction through ERK activation because of a defective recruitment of PP2A-Bα by TβRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call