Abstract
Sugar transport and partitioning play key roles in the regulation of plant development and responses to biotic and abiotic factors. During plant/pathogen interactions, there is a competition for sugar that is controlled by membrane transporters and their regulation is decisive for the outcome of the interaction. SWEET sugar transporters are the targets of extracellular pathogens, which modify their expression to acquire the sugars necessary to their growth (Chen et al., 2010). The regulation of carbon allocation and sugar partitioning in the interaction between grapevine (Vitis vinifera) and its pathogens is poorly understood. We previously characterized the SWEET family in V. vinifera and showed that SWEET4 could be involved in resistance to the necrotrophic fungus Botrytis cinerea in Arabidopsis (Chong et al., 2014). To study the role of VvSWEET4 in grapevine, we produced V. vinifera cv. Syrah hairy roots overexpressing VvSWEET4 under the control of the CaMV 35S promoter (VvSWEET4OX). High levels of VvSWEET4 expression in hairy roots resulted in enhanced growth on media containing glucose or sucrose and increased contents in glucose and fructose. Sugar uptake assays further showed an improved glucose absorption in VvSWEET4 overexpressors. In parallel, we observed that VvSWEET4 expression was significantly induced after infection of wild type grapevine hairy roots with Pythium irregulare, a soilborne necrotrophic pathogen. Importantly, grapevine hairy roots overexpressing VvSWEET4 exhibited an improved resistance level to P. irregulare infection. This resistance phenotype was associated with higher glucose pools in roots after infection, higher constitutive expression of several genes involved in flavonoid biosynthesis, and higher flavanol contents. We propose that high sugar levels in VvSWEET4OX hairy roots provides a better support to the increased energy demand during pathogen infection. In addition, high sugar levels promote biosynthesis of flavonoids with antifungal properties. Overall, this work highlights the key role of sugar transport mediated by SWEET transporters for secondary metabolism regulation and pathogen resistance in grapevine.
Highlights
Grapevine (Vitis vinifera) is an economically important crop that is susceptible to diverse pathogens
In order to study the sugar transport function of VvSWEET4 in grapevine, the coding sequence of this transporter was placed under the control of the 35S CaMV promoter and used to create transformed hairy roots from stem tissue of V. vinifera cv
Growth of the hairy root lines was studied in more detail by measuring the length increase of primary roots at different times after subculture on media supplemented with glucose (Figure 2B) or sucrose (Figure 2C)
Summary
Grapevine (Vitis vinifera) is an economically important crop that is susceptible to diverse pathogens. Current strategies to control diseases in grapevine rely on the massive use of pesticides, making viticulture a major consumer of chemicals in agriculture, with important economic and environmental consequences. Source to sink transport and allocation of sugars are major determinants in the control of crop productivity and play key roles in the regulation of plant responses to biotic and abiotic factors (Lemoine et al, 2013). Since biotrophic and necrotrophic pathogens act as additional sinks within the host tissue, sugar transport and partitioning are modified following infection (Lemoine et al, 2013). Increasing evidence shows that during plant-pathogen coevolution, microorganisms have evolved sophisticated mechanisms to highjack sugar fluxes from their hosts (Baker et al, 2012). Regulation of sugar allocation during the interaction with pathogens is poorly understood
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have