Abstract

In this study, we explored a novel approach to enhancing the production and bioactivities of Ganoderma exopolysaccharides. The homologous phosphomannomutase gene (PMM1) was cloned and overexpressed in Ganoderma for the first time. As a result, the maximum production of exopolysaccharides by the PMM1 transformant was 1.53 g/L, which was 1.41-fold higher than of a wild-type (WT) strain in a 5-L bioreactor. The transcription levels of PMM1 and PMM2 increased 40.5- and 2.4-fold, respectively, whereas the value of the GDP-D-mannose pyrophosphorylase gene did not change significantly in this transgenic strain. Furthermore, the major exopolysaccharide fractions from PMM1 transformants contained higher amounts of mannose (56.5 % and 21.1 %) than those from a WT strain (26.7 % and 9.3 %). Moreover, the major fractions from PMM1 transformants exhibited stronger regulation effects on macrophage. In conclusion, this study is helpful for the efficient production and application of Ganoderma exopolysaccharides and facilitates an understanding of polysaccharide biosynthesis regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.