Abstract

The non-expressor of the pathogenesis-related genes 1 (NPR1) is a master regulator in defense signaling of plants and plays a key role in basal and systemic acquired resistance. In this study, we isolated a NPR1-like gene from the oriental hybrid lily 'Sorbonne' (designated as LhSorNPR1) using rapid amplification of cDNA ends (RACE). The open reading frame of LhSorNPR1 consisted of 1854bp, encoding a protein of 617 amino acids. Multiple sequence alignment revealed that LhSorNPR1 shares high similarity to NPR1-like proteins and characteristics of the BTB/POZ domain and ankyrin repeats. A comparison between the intron/exon organization of LhSorNPR1 and orthologs from other plant species demonstrated that NPR1 genomic fragments (including LhSorNPR1) are all composed of 4 exons and 3 introns. We also identified sequence motifs involved in hormone response and binding sites for RAV1 proteins and WRKY transcription factors through the prediction of cis-regulatory elements in the LhSorNPR1 promoter. Our gene expression analysis showed that LhSorNPR1 transcript levels significantly differed in various tissues, and that LhSorNPR1 expressions were induced by sodium salicylate, ethephon, and methyl jasmonate. Furthermore, we transformed LhSorNPR1 into Col-0 wild-type Arabidopsis to conduct function analysis, and we observed enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 in the Arabidopsis expressing LhSorNPR1 gene. The enhanced disease resistance of LhSorNPR1 expressing plants could correlate to elevated expression levels in pathogenesis-related genes (PR1, PR2, and PR5) in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call