Abstract

Enhancing crop tolerance to waterlogging is critical for improving food and biofuel security. In waterlogged soils, roots are exposed to a low oxygen environment. The group VII ethylene response factors (ERFVIIs) were recently identified as key regulators of plant low oxygen response. Oxygen-dependent N-end rule pathways can regulate the stability of ERFVIIs. This study aims to characterize the function of the Jatropha curcas ERFVIIs and the impact of N-terminal modification that stabilized the protein toward low oxygen response. This study revealed that all three JcERFVII proteins are substrates of the N-end rule pathway. Overexpression of JcERFVII2 conferred tolerance to low oxygen stress in Arabidopsis. In contrast, the constitutive overexpression of stabilized JcERFVII2 reduced low oxygen tolerance. RNA-seq was performed to elucidate the functional roles of JcERFVII2 and the impact of its N-terminal modification. Overexpression of both wildtype and stabilized JcERFVII2 constitutively upregulated the plant core hypoxia-responsive genes. Besides, overexpression of the stabilized JcERFVII2 further upregulated various genes controlling fermentative metabolic processes, oxidative stress, and pathogen responses under aerobic conditions. In summary, JcERFVII2 is an N-end rule regulated waterlogging-responsive transcription factor that modulates the expression of multiple stress-responsive genes; therefore, it is a potential candidate for molecular breeding of multiple stress-tolerant crops.

Highlights

  • Waterlogging can damage most crops, creating one of the most significant problems in agriculture worldwide

  • The results revealed that JcERFVII1 clustered members of the Arabidopsis ERFVIIs, including RAP2.2, RAP2.3, RAP2.12, HRE1, and HRE2, and the with RAP2.2 and RAP2.12, JcERFVII2 clustered with RAP2.3, and JcERFVII3 clustered with HRE2 phylogenetic relationship was evaluated

  • This study focuses on elucidating the roles of JcERFVIIs towards waterlogging and low oxygen

Read more

Summary

Introduction

Waterlogging can damage most crops, creating one of the most significant problems in agriculture worldwide. During the heavy rainy season in the plain area, soil can quickly become waterlogged due to poor drainage, creating a low oxygen environment in the root area underground. Low oxygen stress leads to the induction of a particular set of genes involved in carbohydrate utilization, energy metabolism, and fermentation to sustain ATP production [1]. Since global climate change could increase the number of flooding events, improved crop varieties with waterlogging tolerance are essential [3,4]. The ethylene response factor (ERF) family is one of the largest plant-specific transcription factor families characterized by a single DNA-binding domain, APETALA2 (AP2), with expanded functions in hormonal response, development, and tolerance to biotic and abiotic stresses [5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call