Abstract

Plant-specific group VII Ethylene Response Factor (ERF) transcription factors have emerged as pivotal regulators of flooding and low oxygen responses. In rice (Oryza sativa), these proteins regulate contrasting strategies of flooding survival. Recent studies on Arabidopsis thaliana group VII ERFs show they are stabilized under hypoxia but destabilized under oxygen-replete conditions via the N-end rule pathway of targeted proteolysis. Oxygen-dependent sequestration at the plasma membrane maintains at least one of these proteins, RAP2.12, under normoxia. Remarkably, SUB1A, the rice group VII ERF that enables prolonged submergence tolerance, appears to evade oxygen-regulated N-end rule degradation. We propose that the turnover of group VII ERFs is of ecological relevance in wetland species and might be manipulated to improve flood tolerance of crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.