Abstract
Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. OA chondrocytes were transfected with a miRNA precursor for hsa-miR-148a or a miRNA precursor negative control. After 3, 7, 14 and 21 days, real-time PCR was performed to examine gene expression levels of aggrecan (ACAN), type I, II, and X collagen (COL1A1, COL2A1, COl10A1), matrix metallopeptidase 13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and the serpin peptidase inhibitor, clade H (heat shock protein 47), member 1 (SERPINH1). After 3 weeks, DNA content and proteoglycan and collagen content and release were determined. Type II collagen was analyzed at the protein level by Western blot. Overexpression of hsa-miR-148a had no effect on ACAN, COL1A1 and SERPINH1 gene expression, but increased COL2A1 and decreased COL10A1, MMP13 and ADAMTS5 gene expression. Luciferase reporter assay confirmed direct interaction of miR-148a and COL10A1, MMP13 and ADAMTS5. The matrix deposited by the miR-148a overexpressing cells contained more proteoglycans and collagen, in particular type II collagen. Proteoglycan and collagen release into the culture medium was inhibited, but total collagen production was increased. Overexpression of hsa-miR-148a inhibits hypertrophic differentiation and increases the production and deposition of type II collagen by OA chondrocytes, which is accompanied by an increased retention of proteoglycans. Hsa-miR-148a might be a potential disease-modifying compound in OA, as it promotes hyaline cartilage production.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have