Abstract

Huntington’s disease (HD) and other polyglutamine (polyQ) neurodegenerative diseases are characterized by neuronal accumulation of the disease protein, suggesting that the cellular ability to handle abnormal proteins is compromised. As a multi-subunit protein localized in the mitochondria of eukaryotic cells, the F 0F 1-ATP synthase α belongs to the family of stress proteins HSP60. Currently, mounting evidences indicate F 0F 1-ATP synthase α may play a role in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Recently, ATP synthase α was reported to have protective and therapeutic roles in primary cardiacmyocytes of iron-overloaded rats by lowering ROS production. However, little is understood about the role of ATP synthase α in cell death and neurodegeneration. Here, we demonstrate that overexpression of ATP synthase α suppresses huntingtin (htt) polyQ aggregation and toxicity in transfected SH-SY5Y cell lines. Overexpression of ATP synthase α is able to protect cell death caused by polyglutamine-expanded htt. Transient overexpression of ATP synthase α suppresses the aggregate formation by estimation of polyQ aggregation, Western blot analysis, and filter trap assay (FTA) in transfected SH-SY5Y cells. These results indicated that ATP synthase α has a strong inhibitory effect on polyglutamine aggregate formation and toxicity in vitro, and suggest a novel neuroprotective role of ATP synthase α.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.