Abstract

ATP sulfurylase, an enzyme which catalyzes the conversion of sulfate to adenosine 5′-phosphosulfate (APS), plays a significant role in controlling sulfur metabolism in plants. In this study, we have expressed soybean plastid ATP sulfurylase isoform 1 in transgenic soybean without its transit peptide under the control of the 35S CaMV promoter. Subcellular fractionation and immunoblot analysis revealed that ATP sulfurylase isoform 1 was predominantly expressed in the cell cytoplasm. Compared with that of untransformed plants, the ATP sulfurylase activity was about 2.5-fold higher in developing seeds. High-resolution 2-D gel electrophoresis and immunoblot analyses revealed that transgenic soybean seeds overexpressing ATP sulfurylase accumulated very low levels of the β-subunit of β-conglycinin. In contrast, the accumulation of the cysteine-rich Bowman–Birk protease inhibitor was several fold higher in transgenic soybean plants when compared to the non-transgenic wild-type seeds. The overall protein content of the transgenic seeds was lowered by about 3% when compared to the wild-type seeds. Metabolite profiling by LC–MS and GC–MS quantified 124 seed metabolites out of which 84 were present in higher amounts and 40 were present in lower amounts in ATP sulfurylase overexpressing seeds compared to the wild-type seeds. Sulfate, cysteine, and some sulfur-containing secondary metabolites accumulated in higher amounts in ATP sulfurylase transgenic seeds. Additionally, ATP sulfurylase overexpressing seeds contained significantly higher amounts of phospholipids, lysophospholipids, diacylglycerols, sterols, and sulfolipids. Importantly, over expression of ATP sulfurylase resulted in 37–52% and 15–19% increases in the protein-bound cysteine and methionine content of transgenic seeds, respectively. Our results demonstrate that manipulating the expression levels of key sulfur assimilatory enzymes could be exploited to improve the nutritive value of soybean seeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.