Abstract
The aflatoxin biosynthetic pathway regulatory gene, aflR, encodes a putative 47-kDa protein containing a zinc cluster DNA binding motif. It is required for the transcription of all of the characterized aflatoxin pathway genes in both Aspergillus flavus and Aspergillus parasiticus. The objective of this study was to examine the effects of aflR overexpression on temporal gene expression, aflatoxin production, and nitrate inhibition of aflatoxin biosynthesis in A. flavus. An inducible expression construct was made by fusing the coding region of aflR to the promoter region of the A. flavus adh1 gene. This construct was transformed into A. flavus 656-2 (FGSC A1010), a strain mutated at the aflR locus. Strain 656-2 containing the adh1(p)::aflR construct had induced transcription of two early aflatoxin pathway genes, nor-1 and pksA, and produced wild-type concentrations of aflatoxin in a temporal pattern similar to that of wild-type strains of A. flavus. Strains 656-2 and 86-10 (FGSC A1009) an aflatoxigenic strain, were transformed with a construct containing the constitutive promoter gpdA driving aflR. Transformants of these strains constitutively expressed aflR, fas-1A, pksA, nor-1, and omtA but did not constitutively produce aflatoxin. Strain 86-10 containing the gpdA(p)::aflR construct produced 50 times more aflatoxin than 86-10, but the temporal pattern of aflatoxin production was the same as for 86-10, and aflatoxin production was also induced by sucrose. The addition of 10 g of nitrate per liter to sucrose low salts medium inhibited aflatoxin production by both strain 86-10 and a transformant of 86-10 containing the gpdA(p)::aflR construct, indicating that nitrate inhibition of aflatoxin biosynthesis does not occur solely at the level of aflR transcription. These studies show that constitutive overexpression of the pathway transcriptional regulatory gene aflR leads to higher transcript accumulation of pathway genes and increased aflatoxin production but that the initiation of aflatoxin biosynthesis is not solely regulated by the transcriptional activities of the biosynthetic pathway.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have