Abstract

Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial “DOK.” We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0–0.25, 0.25–0.5, 0.5–0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils.

Highlights

  • Plant roots play a crucial role in carbon (C) and nutrient cycling, they promote the formation and structural stability of soils, and shape entire communities of soil organisms

  • Our 139 root samples from the field had 60% maize root biomass C or, in other words, 40% EOM C averaged over management treatments, sampling depths and positions, root size classes, and EOM exclusion practices

  • The proportions of maize root biomass C were highly variable between individual samples and ranged from 5 to 100%

Read more

Summary

Introduction

Plant roots play a crucial role in carbon (C) and nutrient cycling, they promote the formation and structural stability of soils, and shape entire communities of soil organisms. The most commonly investigated root parameter in studies of plant response to environmental change is root biomass as it is closely linked to the energy investment of plants in their root systems or, in other words, the amount of C that is allocated below ground (Fageria, 2013). This makes it one of the most relevant root parameters for soil C modeling and for identifying efficient climate change mitigation options (Bolinder et al, 2007; Paustian et al, 2016). Roots are often categorized in ‘coarse’ and ‘fine’ roots based on diameters of more than or maximum 2 mm, respectively, when the functional duality of the root system with both longer- and shorter-lived roots is of relevance (Smithwick et al, 2014) as in studies of root decomposition and C sequestration in soil (Silver and Miya, 2001; Zhang and Wang, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call