Abstract

First, weak solutions of generalized stochastic Hamiltonian systems (gsHs) are constructed via essential m-dissipativity of their generators on a suitable core. For a scaled gsHs we prove convergence of the corresponding semigroups and tightness of the weak solutions. This yields convergence in law of the scaled gsHs to a distorted Brownian motion. In particular, the results confirm the convergence of the Langevin dynamics in the overdamped regime to the overdamped Langevin equation. The proofs work for a large class of (singular) interaction potentials including, e.g. potentials of Lennard-Jones type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.