Abstract

Background: Robotic systems have the potential to significantly enhance the accuracy and outcomes of spinal surgery. Adopting this new technology requires an examination of its learning curve and influencing factors. This study analyzes the learning curve associated with using the Mazor X Stealth Edition system for pedicle screw placement and performs a matched-pair analysis to compare operative durations between robot-assisted and navigation-based surgeries, evaluating the efficiency of the robotic system. Methods: We collected retrospective operative data from patients who underwent robot-assisted pedicle screw placements between December 2020 and June 2024 and conducted a cumulative sum (CuSUM) analysis to assess the learning curve, focusing on the robotic system’s setup duration. Additionally, we compared a group of patients who underwent robot-assisted pedicle screw placements with a pair-matched group who underwent O-arm-based navigation-assisted pedicle screw placements. Results: There was a notable decrease in the robotic setup duration, with a significant shift in trend observed after the first 20 cases. While the initial setup time was 24 minutes, it reduced to 17 minutes in later cases, reflecting a marked improvement in efficiency as the surgeon gained more experience with the robot. Conclusion: Our findings indicate there were no added difficulties using the robotic system compared to the navigation system. Moreover, the learning curve for the robotic system can be quickly surmounted, and it offers clear advantages over previous systems, making it a valuable tool for pedicle screw application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.