Abstract

Although recent dramatic advances in power conversion efficiencies (PCEs) have resulted in values over 19%, the poor photostability of organic photovoltaics (OPVs) has been a serious bottleneck to their commercialization. The photocatalytic effect, which is caused by incident ultraviolet-A (UV-A, 320-400 nm) light in the most commonly used zinc oxide (ZnOX) electron transport layer (ETL), significantly deteriorates the photostability of OPVs. In this work, we develop a new and facile method to enhance the photostability of nonfullerene acceptor-based OPVs by introducing UV-A-insensitive titanium suboxide (TiOX) ETL. Through an in-depth analysis of mass information at the interface between the ETL and photoactive layer, we confirm that the UV-A-insensitive TiOX suppresses the photocatalytic effect. The resulting device employing the TiOX ETL shows excellent photostability, obtaining 80% of the initial PCE for up to 200 h under 1 sun illumination, which is 10 times longer than that of the conventional ZnOX system (19 h).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call