Abstract
Relating behavior to brain activity in animals is a fundamental goal in neuroscience, with practical applications in building robust brain-machine interfaces. However, the domain gap between individuals is a major issue that prevents the training of general models that work on unlabeled subjects. Since 3D pose data can now be reliably extracted from multi-view video sequences without manual intervention, we propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations exploiting the properties of microscopy imaging. To test our method, we collect a large dataset that features flies and their neural activity. To reduce the domain gap, during training, we mix features of neural and behavioral data across flies that seem to be performing similar actions. To show our method can generalize further neural modalities and other downstream tasks, we test our method on a human neural Electrocorticography dataset, and another RGB video data of human activities from different viewpoints. We believe our work will enable more robust neural decoding algorithms to be used in future brain-machine interfaces.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have