Abstract

Fluorescence lifetime imaging microscopy (FLIM) provides quantitative readouts of biochemical microenvironments, holding great promise for biomedical imaging. However, conventional FLIM relies on slow photon counting routines to accumulate sufficient photon statistics, restricting acquisition speeds. Here we demonstrate SparseFLIM, an intelligent paradigm for achieving high-fidelity FLIM reconstruction from sparse photon measurements. We develop a coupled bidirectional propagation network that enriches photon counts and recovers hidden spatial-temporal information. Quantitative analysis shows over tenfold photon enrichment, dramatically improving signal-to-noise ratio, lifetime accuracy, and correlation compared to the original sparse data. SparseFLIM enables reconstructing spatially and temporally undersampled FLIM at full resolution and channel count. The model exhibits strong generalization across experimental modalities including multispectral FLIM and in vivo endoscopic FLIM. This work establishes deep learning as a promising approach to enhance fluorescence lifetime imaging and transcend limitations imposed by the inherent codependence between measurement duration and information content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.