Abstract
The effective hydrogen production in single-chamber microbial electrolysis cells (MECs) has been seriously challenged by various hydrogen consumers resulting in substantial hydrogen loss. In previous studies, the total ammonia nitrogen (TAN) has been used to inhibit certain hydrogen-consuming microorganisms to enhance hydrogen production in fermentation. In this study, we explored the feasibility of using source-separated urine to overcome hydrogen loss in the MEC, with the primary component responsible being TAN generated via urea hydrolysis. Experimental results revealed that the optimal TAN concentration ranged from 1.17 g N/L to 1.75 g N/L. Within this range, the hydrogen production rate substantially improved from less than 100 L/(m3·d) up to 520 L/(m3·d), and cathode recovery efficiency and energy recovery efficiency were greatly enhanced, with the hydrogen percentage achieved over 95 % of the total gas volume, while maintaining uninterrupted electroactivity in the anode. Compared to using chemically added TAN, using source separated urine as the source of ammonia also showed the effect of overcoming hydrogen loss but with lower Coulombic efficiency due to the complex organic components. Pre-adaptation of the reactor with urea enhanced hydrogen production by nearly 60 %. This study demonstrated the effectiveness of TAN and urine in suppressing hydrogen loss, and the results are highly relevant to MECs treating real wastewater with high TAN concentrations, particularly human fecal and urine wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.