Abstract
Plant biomechanics, an emerging interdisciplinary field, plays an irreplaceable role in revealing the structure-function relationships in plant life processes. This field integrates classical mechanical theories with modern biological methods, providing novel perspectives for plant phenotype research and offering significant theoretical guidance for crop breeding, cultivation management, and ecological protection. This review comprehensively examines existing research from three dimensions: research perspectives, methodologies, and content. Using maize lodging as a case study, key scientific questions, research methods, and modeling strategies are analyzed across scales from molecular to population levels. Furthermore, this paper identifies the main challenges in plant biomechanics research, particularly in methodology development, theoretical framework refinement, model simulation, and 3D modeling. Finally, innovative directions and application prospects are explored for integrating plant biomechanics with artificial intelligence technology, multi-scale modeling, genetic improvement, and biomimetics. These research advances will pave new paths for theoretical innovation and practical applications in plant biomechanics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have