Abstract

SummaryOur present paper summarizes the shortcomings in the current fire‐resistant design of oversized steel structures and proposes a method for overall stability analysis of steel structures in the event of fire. The Fire Dynamics Simulator (FDS) software platform–based large‐eddy simulation technology can accurately reflect the environment in a fire scenario and correctly predict the spatial–temporal change in the smoke temperature field within an oversized space. Adopting the FDS software and finite element structural analysis (ANSYS) coupling can fundamentally overcome the natural defect of adopting the International Organization for Standardization (ISO) standard curve (or other indoor homogeneous temperature increase curves) that substitutes a point for the overview of a field. They reflect the structural additional internal force and internal force redistribution incurred by the gradient temperature difference of the spatial–temporal changing nonhomogeneous temperature field and both theoretically and technically realize the analysis of structural heat transfer and mechanical properties in a natural fire. Furthermore, a modified model to predict the steel temperature curve in localized fire is also proposed. The localized fire in large spaces can be treated as a point fire source to evaluate the flame thermal radiation to steel members in the modified model. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call