Abstract

To investigate the effect of the growth arrest- and DNA damage-inducible Gadd45a gene on the radiosensitivity of human tongue squamous cell carcinoma cell line to ionizing radiation (IR). Short interfering ribonucleic acid (si-RNA) targeting Gadd45a or an irrelevant mRNA (nonsense si-RNA) was chemically synthesized. The constructed si-RNAs were transfected into Tca8113 cells and Gadd45a expression was determined using quantitative real-time PCR and Western-blot. After 24-h exposure to IR at a dose rate of 4 Gy/min, apoptosis of Tca8113 cells was detected using flow cytometry, and radiosensitivity was measured using MTT assays. IR apparently increased the expression of Gadd45a at mRNA and protein levels in Tca8113 cells. The effect was efficiently inhibited by transfection with Gadd45a si-RNA (P<0.01). Furthermore, silencing Gadd45a gene significantly increased cell viability and decreased the percentage of apoptotic cells during irradiation, which indicated that IR-induced Gadd45a over-expression could increase the radiosensitivity of Tca8113 cells. These results indicated that targeting Gadd45a may have important therapeutic implications in sensitizing Tca8113 cells to IR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.