Abstract
Atherogenesis is associated with inflammation and oxidative stress. Activation of renin-angiotensin system with generation of angiotensin II and type 1 receptor (AT1R) stimulation has been amply reported in atherosclerosis. Since angiotensin II type 2 receptor (AT2R) activity is purported to oppose the effects of AT1R, we hypothesized that AT2R (agtr2) over-expression would inhibit atherogenesis. We prepared recombinant adeno-associated virus type-2 (AAV) carrying AT2R cDNA (AAV/AT2R), and homozygous LDLR-deficient (KO) mice were given AAV/AT2R, AAV/Neo or saline. All mice were placed on a high cholesterol diet. After 18 weeks, AT2R was found to be over-expressed systemically in AAV/AT2R-treated mice. Atherogenesis in aorta was reduced in the AAV/AT2R group by ≈50% compared to other LDLR KO mice groups. Expression of NADPH oxidase, nitrotyrosine and NF-κB was increased in aortic tissues of the LDLR KO mice given saline or AAV/Neo, but not in mice with AT2R upregulation. Expression of endothelial nitric oxide synthase (eNOS) and heme-oxygenase-1 (HO-1) was decreased and that of the lectin-like oxidized-LDL receptor (LOX-1) increased in the LDLR KO mice, but not in the mice with AT2R over-expression. Further, Akt-1 phosphorylation was reduced in the LDLR KO mice, but not in the mice with AT2R over-expression. Thus, AT2R upregulation can reduce atherogenesis, possibly by modulating oxidative stress and the pro-inflammatory cascade, mediated via Akt-1. Over-expression of AT2R may be an important therapeutic approach in atherosclerosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have