Abstract

As a safer and more environmentally friendly alternative to lead-based perovskite, lead-free tin halide perovskite solar cells (PSCs) have gained significant attention. However, these cells have faced challenges, including poor quality from easy oxidation and fast crystallization, resulting in a rough surface morphology with numerous defects. To address these issues, we developed a strategy utilizing polysilanes, specifically polymethyl-phenyl-silane (PMPS) and deca-phenyl-penta-silane (DPPS), to enhance the quality of tin perovskite. Various modification methods, such as precursor doping, antisolvent modification, and surface passivation, were attempted. A promising 14.18 % efficiency of Tin PSC with better stability was achieved through surface passivation of PMPS. Further characterization showed that PMPS could work as a bifunctional molecule: smooth surface morphology and enlarge grain size (short-circuit current (Jsc) enhancement) as well as reductant for Sn4+ and regulator of surface energy level (open-circuit voltage (Voc) enhancement).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.