Abstract

Ovarian follicular development is a critical determinant of reproductive performance in litter bearing species like pigs, wherein economic gains depend on litter size. The study aimed to gain insight into the differentially expressed genes (DEGs) and signalling pathways regulating follicular growth and maturation in Ghoongroo pigs. Transcriptome profiling of porcine small follicles (SF) and large follicles (LF) was conducted using NovaSeq600 sequencing platform and DEGs were identified using DESeq2 with threshold of Padj. < 0.05 and log2 fold change cut off 0.58 (LF vs. SF). Functional annotations and bioinformatics analysis of DEGs were performed to find out biological functions, signalling pathways and hub genes regulating follicular dynamics. Transcriptome analysis revealed 709 and 479 genes unique to SF and LF stages, respectively, and 11,993 co-expressed genes in both the groups. In total, 507 DEGs (284 upregulated and 223 downregulated) were identified, which encoded for diverse proteins including transcription factors (TFs). These DEGs were functionally linked to response to stimulus, lipid metabolic process, developmental process, extracellular matrix organisation along with the immune system process, indicating wide-ranging mechanisms associated with follicular transition. The enriched KEGG pathways in LF stage consisted of ovarian steroidogenesis, cholesterol and retinol metabolism, cell adhesion molecules, cytokine receptor interaction and immune signalling pathways, depicting intra-follicular control of varied ovarian function. The hub gene analysis revealed APOE, SCARB1, MMP9, CYP17A1, TYROBP as key regulators of follicular development. This study identified candidate genes and TFs providing steroidogenic advantage to LFs which makes them fit for selection into the ovulatory pool of follicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call