Abstract
This paper investigates algebraic objects equipped with an operator, such as operated monoids, operated algebras etc. Various free object functors in these operated contexts are explicitly constructed. For operated algebras whose operator satisfies a set Φ of relations (usually called operated polynomial identities (aka. OPIs)), Guo defined free objects, called free Φ-algebras, via universal algebra. Free Φ-algebras over algebras are studied in details. A mild sufficient condition is found such that Φ together with a Gröbner-Shirshov basis of an algebra A form a Gröbner-Shirshov basis of the free Φ-algebra over algebra A in the sense of Guo et al.. Ample examples for which this condition holds are provided, such as all Rota-Baxter type OPIs, a class of differential type OPIs, averaging OPIs and Reynolds OPI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.