Abstract
SummaryThis article studies the output‐feedback adaptive fault‐tolerant boundary control problem for scalar hyperbolic partial differential equation systems with actuator faults. All the coefficients of the controlled plant are unknown, and two types of actuator faults, that is, multiplicative faults and additive faults, are considered simultaneously. For the state estimation problem, two filters are constructed, based on which an observer is obtained to estimate the system state. A parametric model is established for actuator faults, based on which the parameter updating laws of gradient type are then developed to identify actuator faults and to estimate the unknown system coefficients. With the observer and the parameter updating laws, an output‐feedback adaptive fault‐tolerant boundary control law is developed via infinite‐dimensional backstepping method. The boundness of all the signals involved in the control design is guaranteed and the convergence of system states is also confirmed. Finally, the simulation results are given to testify the effectiveness of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.